Home

Aims and Scope

Instructions for Authors

View Issues & Articles

Editorial Board

Article Search

ATS International Journal
Editor in Chief: Prof. Alessandro Calvi
Address: Via Vito Volterra 62,
00146, Rome, Italy.
Mail to: alessandro.calvi@uniroma3.it

Vehicle trajectories resulting from traversing FDOT street curb. Numerical analysis and experimental verification

K. Cichocki, J. W. Wekezer
Pages: 51-61

Abstract:

The paper presents research results of a study, in which computational mechanics was utilized to predict vehicle trajectories upon traversing standard Florida DOT street curbs. Computational analysis was performed using LS-DYNA [1] computer code and two modified public domain finite element models of motor vehicles: Ford Festiva and Ford Taurus. Computational mechanics analyses indicated that both vehicles tend to retain larger amount of their kinetic energy after traversing street curbs. It is therefore dangerous to anticipate that performance of street curbs would be comparable with that demonstrated by guardrails. Full-scale experimental tests for Ford Festiva and Ford Taurus have been performed at Texas Transportation Institute to validate the assumed discrete numerical models and the results of LS-DYNA analyses. Both vehicles have been tested for two values of approach angle, with impact velocity of 20 m/s (72 km/h). The numerical study indicated a strong dependence of vehicle trajectories on properly assumed discrete model for suspension and tires. The major goal of the further research was to study the behaviour of various vehicles (including heavier Chevrolet pickup-truck) for different approach angles, velocities and curb profiles.
Keywords: dynamics; impact; trajectories; explicit analysis

2025 ISSUES
2024 ISSUES
2023 ISSUES
2022 ISSUES
2021 ISSUES
2020 ISSUES
2019 ISSUES
2018 ISSUES
2017 ISSUES
2016 ISSUES
2015 ISSUES
2014 ISSUES
2013 ISSUES
2012 ISSUES
2011 ISSUES
2010 ISSUES
2009 ISSUES
2008 ISSUES
2007 ISSUES
2006 ISSUES
2005 ISSUES
2004 ISSUES
2003 ISSUES