Deceleration model for two-lane rural roads
B. Crisman, P. Perco, A. Robba, R. Roberti
Pages: 19-32
Abstract:
The operating speed-profile is an important tool for the safety evaluations of new and existing roads. In particular, the operating speed-profile is useful to evaluate the consistency of an alignment identifying the excessive speed differential and to calculate the correct sight distance necessary along the road. Several models have been developed to predict the operating speed on curves and on tangents of two-lane rural roads. However, to trace an operating speed-profile close to the real speed-profile, it is necessary to join these speeds on successive elements using deceleration and acceleration rates that represent the real rates experienced by drivers. Therefore, to develop a deceleration model that could be effectively used in the operating speed-profile models, driver speed reduction behaviour and its dependence on the geometric characteristics of the road were investigated on 18 horizontal curves of two-lane rural roads. The results show that a single constant deceleration rate does not effectively describe the observed speed reduction behaviour. Therefore, its use in a speed-profile model results in a wrong estimation of the real distance used to decelerate before a curve. In fact, the deceleration rate observed varies significantly between the various curves. The data analysis revealed that the deceleration rate is correlated to the radius, the curve length, the approaching speed and the speed reduction. Therefore, two deceleration models were developed. The first one estimates the deceleration rate as a function of the radius of the impending curve and the second one as a function of the approaching speed and of the speed reduction. These models can be effectively used for the construction of the operating speed-profile because they predict deceleration rates consistent with the speed reduction behaviour observed and, consequently, deceleration lengths closer to the real distance travelled during the speed reduction.
Keywords: two-lane rural roads; deceleration rate; operating speed; operating speed-profile
2025 ISSUES
2024 ISSUES
LXII - April 2024LXIII - July 2024LXIV - November 2024Special 2024 Vol1Special 2024 Vol2Special 2024 Vol3Special 2024 Vol4
2023 ISSUES
LIX - April 2023LX - July 2023LXI - November 2023Special Issue 2023 Vol1Special Issue 2023 Vol2Special Issue 2023 Vol3
2022 ISSUES
LVI - April 2022LVII - July 2022LVIII - November 2022Special Issue 2022 Vol1Special Issue 2022 Vol2Special Issue 2022 Vol3Special Issue 2022 Vol4
2021 ISSUES
LIII - April 2021LIV - July 2021LV - November 2021Special Issue 2021 Vol1Special Issue 2021 Vol2Special Issue 2021 Vol3
2020 ISSUES
2019 ISSUES
Special Issue 2019 Vol1Special Issue 2019 Vol2Special Issue 2019 Vol3XLIX - November 2019XLVII - April 2019XLVIII - July 2019
2018 ISSUES
Special Issue 2018 Vol1Special Issue 2018 Vol2Special Issue 2018 Vol3XLIV - April 2018XLV - July 2018XLVI - November 2018
2017 ISSUES
Special Issue 2017 Vol1Special Issue 2017 Vol2Special Issue 2017 Vol3XLI - April 2017XLII - July 2017XLIII - November 2017
2016 ISSUES
Special Issue 2016 Vol1Special Issue 2016 Vol2Special Issue 2016 Vol3XL - November 2016XXXIX - July 2016XXXVIII - April 2016
2015 ISSUES
Special Issue 2015 Vol1Special Issue 2015 Vol2XXXV - April 2015XXXVI - July 2015XXXVII - November 2015
2014 ISSUES
Special Issue 2014 Vol1Special Issue 2014 Vol2Special Issue 2014 Vol3XXXII - April 2014XXXIII - July 2014XXXIV - November 2014
2013 ISSUES
2012 ISSUES
2011 ISSUES
2010 ISSUES
2009 ISSUES
2008 ISSUES
2007 ISSUES
2006 ISSUES
2005 ISSUES
2004 ISSUES
2003 ISSUES