Home

Aims and Scope

Instructions for Authors

View Issues & Articles

Editorial Board

Article Search

ATS International Journal
Editor in Chief: Prof. Alessandro Calvi
Address: Via Vito Volterra 62,
00146, Rome, Italy.
Mail to: alessandro.calvi@uniroma3.it

The prediction of highway traffic accident injury severity with neuromorphic techniques

D. Chimba, T. Sando
Pages: 17-26

Abstract:

This paper describes the use of one of the neuromorphic techniques – Artificial Neural Networks (ANN) Backpropagation technique to predict crash injury severity. The method of optimizing the number of neurons and epochs used in the ANN backpropagation architecture is presented. The paper also compared the accuracy of the backpropagation method with that of the Ordered Probit (OP) model. The prediction accuracies of 83.3% and 65.5% were obtained for the ANN backpropagation and Ordered Probit (OP) models, respectively. The results indicate that a well structured network with optimized number of neurons and epochs, ANN can perform better than a traditional OP technique. It was also noted that the choice of the number of epochs and neurons is key to obtain an efficient ANN architecture.
Keywords: accident; neural network; fatality

2025 ISSUES
2024 ISSUES
2023 ISSUES
2022 ISSUES
2021 ISSUES
2020 ISSUES
2019 ISSUES
2018 ISSUES
2017 ISSUES
2016 ISSUES
2015 ISSUES
2014 ISSUES
2013 ISSUES
2012 ISSUES
2011 ISSUES
2010 ISSUES
2009 ISSUES
2008 ISSUES
2007 ISSUES
2006 ISSUES
2005 ISSUES
2004 ISSUES
2003 ISSUES