A safety evaluation of an Adaptive Traffic Signal Control system using Computer Vision
A. Tageldin, T. Sayed, M.H. Zaki, M. Azab
Pages: 83-96
Abstract:
The reliance on aggregate historical collision data as a sole technique in road safety analysis was proved challenging in the quest to better understand, predict, and improve road safety conditions. Therefore, surrogate safety measures such as the traffic conflict technique have been promoted as an alternative or complementary approach to assess and analyze road safety from a broader perspective than collision statistics alone. A primary focus of road safety analysis that could greatly benefit from vision-based road safety analysis is before-and-after (BA) evaluation of safety treatments. This study demonstrates the use of automated traffic conflict analysis in conducting a before-and-after (BA) safety study for an Adaptive Traffic Signal Control (ATSC) system. The objective of this study is to conduct a time-series (before-to-after) safety evaluation for two intersections in the City of Surrey where the ATSC system was implemented. The ATSC automatically makes real time adjustments to traffic signal timing based on actual observed traffic volumes to reduce vehicle delays and travel time. Overall, the study demonstrated the usefulness of using automated traffic conflicts in before-and-after safety evaluations of the ATSC system. Traffic conflicts occur more frequently than collisions so the desired sample size for analysis can be obtained in much shorter time periods. It was also demonstrated that the use of computer vision techniques to automate the extraction of traffic conflicts from video data can overcome the shortcomings of the traditional manual conflict observation methods. The results of the analysis showed considerable increase in the frequency and severity of conflicts following the implementation of the ATSC system. The increase of vehicle travel time following the implementation of the ATSC has likely contributed to the observed increase in conflict frequency and severity.
Keywords: traffic conflicts; Computer Vision; safety evaluation; ITS signal control
2025 ISSUES
2024 ISSUES
LXII - April 2024LXIII - July 2024LXIV - November 2024Special 2024 Vol1Special 2024 Vol2Special 2024 Vol3Special 2024 Vol4
2023 ISSUES
LIX - April 2023LX - July 2023LXI - November 2023Special Issue 2023 Vol1Special Issue 2023 Vol2Special Issue 2023 Vol3
2022 ISSUES
LVI - April 2022LVII - July 2022LVIII - November 2022Special Issue 2022 Vol1Special Issue 2022 Vol2Special Issue 2022 Vol3Special Issue 2022 Vol4
2021 ISSUES
LIII - April 2021LIV - July 2021LV - November 2021Special Issue 2021 Vol1Special Issue 2021 Vol2Special Issue 2021 Vol3
2020 ISSUES
2019 ISSUES
Special Issue 2019 Vol1Special Issue 2019 Vol2Special Issue 2019 Vol3XLIX - November 2019XLVII - April 2019XLVIII - July 2019
2018 ISSUES
Special Issue 2018 Vol1Special Issue 2018 Vol2Special Issue 2018 Vol3XLIV - April 2018XLV - July 2018XLVI - November 2018
2017 ISSUES
Special Issue 2017 Vol1Special Issue 2017 Vol2Special Issue 2017 Vol3XLI - April 2017XLII - July 2017XLIII - November 2017
2016 ISSUES
Special Issue 2016 Vol1Special Issue 2016 Vol2Special Issue 2016 Vol3XL - November 2016XXXIX - July 2016XXXVIII - April 2016
2015 ISSUES
Special Issue 2015 Vol1Special Issue 2015 Vol2XXXV - April 2015XXXVI - July 2015XXXVII - November 2015
2014 ISSUES
Special Issue 2014 Vol1Special Issue 2014 Vol2Special Issue 2014 Vol3XXXII - April 2014XXXIII - July 2014XXXIV - November 2014
2013 ISSUES
2012 ISSUES
2011 ISSUES
2010 ISSUES
2009 ISSUES
2008 ISSUES
2007 ISSUES
2006 ISSUES
2005 ISSUES
2004 ISSUES
2003 ISSUES