Home

Aims and Scope

Instructions for Authors

View Issues & Articles

Editorial Board

Article Search

ATS International Journal
Editor in Chief: Prof. Alessandro Calvi
Address: Via Vito Volterra 62,
00146, Rome, Italy.
Mail to: alessandro.calvi@uniroma3.it

A mixed urban traffic road-users classification based on automated video data analysis

M.H. Zaki, T. Sayed, M. El Esawey
Pages: 55-70

Abstract:

This article describes a novel approach for the classification of modes of travel in mixed traffic intersections based on video data. The classification is semi-supervised where the selected classification features included road-user movements’ characteristics such as speed, gait and cadence frequencies (for pedestrians and cyclists respectively) in addition to the estimate of the road-user occupied area. A modified version of the semi-supervised spectral clustering method is adapted where the selected labeled features identify possible relations; thereby enforcing certain constraints between features. Two case studies are demonstrated with video data collected at a roundabout in Vancouver, Canada and a U-turn crossover in Cairo, Egypt. Road-users were first detected and tracked using object recognition methods. The classification algorithm was then applied on the extracted objects trajectories to identify the corresponding modes of travel. Experiments were conducted on the two case studies along with a comparison to other related classification methods. A sensitivity analysis was undertaken to assess the impact of the constraints selection on the effectiveness of the method. A performance analysis demonstrated the robustness of the proposed classification method with an accuracy of higher than 87 percent achieved for both datasets. The experimental results showed that the method also outperformed other related classification methods. This research contributes to the literature of automated data collection and analysis of non-motorized traffic.
Keywords: data collection; road-users classification; computer vision; trajectories analysis; pedestrians; bicycles; vehicles

2025 ISSUES
2024 ISSUES
2023 ISSUES
2022 ISSUES
2021 ISSUES
2020 ISSUES
2019 ISSUES
2018 ISSUES
2017 ISSUES
2016 ISSUES
2015 ISSUES
2014 ISSUES
2013 ISSUES
2012 ISSUES
2011 ISSUES
2010 ISSUES
2009 ISSUES
2008 ISSUES
2007 ISSUES
2006 ISSUES
2005 ISSUES
2004 ISSUES
2003 ISSUES