The effects of automation failure and secondary task on drivers’ ability to mitigate hazards in highly or semi-automated vehicles
A. Borowsky, T. Oron-Gilad
Pages: 59-70
Abstract:
Although the number of automated vehicles is expected to grow there is limited understanding on how drivers will cope with manual driving when automation fails. The study's goals were: (1) develop an experimental test-bed for evaluation of levels of vehicle automation, in-vehicle secondary tasks, and hazardous scenarios; and (2) conduct empirical evaluation to examine how well drivers mitigate road hazards when automation fails unexpectedly, looking at situations where drivers were either engaged with secondary tasks or not prior to the automation failure and/or the hazardous event. The STISIM fixed base simulator, embedded into a car was utilized. Driving scenes were projected on a 7m diameter round screen. An in-house LabVIEW-based program was used to control the simulator and displays; enabling control of four modes of vehicle automation: Manual-no automation (M), Adaptive Cruise Control (ACC), Automatic Steering (AS), and Automated Driving (AD). Two types of secondary tasks were included: (1) Driving related. This task required on road glances; (2) Driving unrelated. This task, presented on an in-vehicle touchscreen, required in-vehicle glances. In a mixed within-between experimental design, eighteen participants were asked to drive through various drives. Each drive included 4 driving sections in the following order: (1) automated, (2) manual, (3) automated with secondary tasks, and (4) manual with secondary tasks, in one of the levels of automation (ACC, AS or AD). In each section, typical hazardous events appeared. Automation failure (i.e., the need to assume manual control) was alerted by sound and visually on the touchscreen. The results showed that while engagement with a non-driving related secondary task lead to more crashes, automation failure did not, especially when drivers were monitoring the road. In addition, drivers’ performance on the secondary task revealed differential effects of automation mode with respect to the road conditions. Implications of this study are discussed.
Keywords: automation failure; secondary non-driving task; hazard mitigation; driving automation
2025 ISSUES
2024 ISSUES
LXII - April 2024LXIII - July 2024LXIV - November 2024Special 2024 Vol1Special 2024 Vol2Special 2024 Vol3Special 2024 Vol4
2023 ISSUES
LIX - April 2023LX - July 2023LXI - November 2023Special Issue 2023 Vol1Special Issue 2023 Vol2Special Issue 2023 Vol3
2022 ISSUES
LVI - April 2022LVII - July 2022LVIII - November 2022Special Issue 2022 Vol1Special Issue 2022 Vol2Special Issue 2022 Vol3Special Issue 2022 Vol4
2021 ISSUES
LIII - April 2021LIV - July 2021LV - November 2021Special Issue 2021 Vol1Special Issue 2021 Vol2Special Issue 2021 Vol3
2020 ISSUES
2019 ISSUES
Special Issue 2019 Vol1Special Issue 2019 Vol2Special Issue 2019 Vol3XLIX - November 2019XLVII - April 2019XLVIII - July 2019
2018 ISSUES
Special Issue 2018 Vol1Special Issue 2018 Vol2Special Issue 2018 Vol3XLIV - April 2018XLV - July 2018XLVI - November 2018
2017 ISSUES
Special Issue 2017 Vol1Special Issue 2017 Vol2Special Issue 2017 Vol3XLI - April 2017XLII - July 2017XLIII - November 2017
2016 ISSUES
Special Issue 2016 Vol1Special Issue 2016 Vol2Special Issue 2016 Vol3XL - November 2016XXXIX - July 2016XXXVIII - April 2016
2015 ISSUES
Special Issue 2015 Vol1Special Issue 2015 Vol2XXXV - April 2015XXXVI - July 2015XXXVII - November 2015
2014 ISSUES
Special Issue 2014 Vol1Special Issue 2014 Vol2Special Issue 2014 Vol3XXXII - April 2014XXXIII - July 2014XXXIV - November 2014
2013 ISSUES
2012 ISSUES
2011 ISSUES
2010 ISSUES
2009 ISSUES
2008 ISSUES
2007 ISSUES
2006 ISSUES
2005 ISSUES
2004 ISSUES
2003 ISSUES