Scale optimization method of Train Working Diagram for high-speed railway based on data mining theory
Z. Wang
Pages: 85-92
Abstract:
Proceeding from the sharp contrast between the actual and planned station arrival-departure times in the dispatching database, this paper analyzes the shortages of the existing scale of train working diagram (TWD), and proposes a new TWD scale optimization method for high-speed railway based on data mining theory, aiming to improve the accuracy and intelligence of high-speed railway dispatching. The conclusions are drawn as follows: (1) through the analysis of the operation data on a high-speed railway line under a Chinese railway bureau, it is learned that the actual RTS is 0.326min shorter than the planned RTS in the TWD scale. The time gap helps to elevate capacity of a 30-section long distance high-speed railway (train interval: 5min; train type: 16-car; attendance rate: 70%) by over 1million person-time. (2) The data analysis shows that the difference between the actual RTS and the planned RTS is highly consistent across different sections. The max standard deviation is 0.535min, and the min is 0.267min. (3) This paper presents a TWD scale modification method based on probability, and gives the results under the probabilities of 50%, 69.15% and 84.13%, respectively.
Keywords: high-speed railway; scale of Train Working Diagram (TWD); data mining; probability
2025 ISSUES
2024 ISSUES
LXII - April 2024LXIII - July 2024LXIV - November 2024Special 2024 Vol1Special 2024 Vol2Special 2024 Vol3Special 2024 Vol4
2023 ISSUES
LIX - April 2023LX - July 2023LXI - November 2023Special Issue 2023 Vol1Special Issue 2023 Vol2Special Issue 2023 Vol3
2022 ISSUES
LVI - April 2022LVII - July 2022LVIII - November 2022Special Issue 2022 Vol1Special Issue 2022 Vol2Special Issue 2022 Vol3Special Issue 2022 Vol4
2021 ISSUES
LIII - April 2021LIV - July 2021LV - November 2021Special Issue 2021 Vol1Special Issue 2021 Vol2Special Issue 2021 Vol3
2020 ISSUES
2019 ISSUES
Special Issue 2019 Vol1Special Issue 2019 Vol2Special Issue 2019 Vol3XLIX - November 2019XLVII - April 2019XLVIII - July 2019
2018 ISSUES
Special Issue 2018 Vol1Special Issue 2018 Vol2Special Issue 2018 Vol3XLIV - April 2018XLV - July 2018XLVI - November 2018
2017 ISSUES
Special Issue 2017 Vol1Special Issue 2017 Vol2Special Issue 2017 Vol3XLI - April 2017XLII - July 2017XLIII - November 2017
2016 ISSUES
Special Issue 2016 Vol1Special Issue 2016 Vol2Special Issue 2016 Vol3XL - November 2016XXXIX - July 2016XXXVIII - April 2016
2015 ISSUES
Special Issue 2015 Vol1Special Issue 2015 Vol2XXXV - April 2015XXXVI - July 2015XXXVII - November 2015
2014 ISSUES
Special Issue 2014 Vol1Special Issue 2014 Vol2Special Issue 2014 Vol3XXXII - April 2014XXXIII - July 2014XXXIV - November 2014
2013 ISSUES
2012 ISSUES
2011 ISSUES
2010 ISSUES
2009 ISSUES
2008 ISSUES
2007 ISSUES
2006 ISSUES
2005 ISSUES
2004 ISSUES
2003 ISSUES