Drivers’ performance in response to engineering treatments at pedestrian crossings
V. Branzi, M. Meocci, L. Domenichini, F. La Torre
Pages: 55-70
Abstract:
Pedestrian injuries and fatalities represent one of the major road safety problems all around the world. In 2016, according to the Italian data 570 pedestrians were killed and more than 21,000 were injured in traffic-related crash; moreover than 50% of accidents that involve pedestrians occur at pedestrian crossings. The speed of the approaching cars to crosswalk is frequently inadequate especially in the peripheral area of the urban road network where roads are usually designed promoting mobility but actually provide access to roadside activities as well. For improving the safety of these vulnerable road users in these contexts speed reducing measures play a relevant role. This paper describes a driving simulator study designed to evaluate the drivers’ behavior in response to different configurations of pedestrian crossings located on urban collector roads. Forty-eight participants drove a test route while data on their reaction time and on the maneuvers carry out in the moment of perception of the pedestrian crosswalk were collected. A statistically significant difference was revealed as a function of the type of engineering treatments. The most effective treatment was the pedestrian crossing located on speed humps with sinusoidal profile and with the colored surface, which generated the maximum speed reduction. The drivers were able to perceive in advance the pedestrian that suddenly crossed the street and the consequent maneuvers were carried out in a more effective way. In addition a benefits-costs evaluation allow demonstrating that a modest speed reduction will have a considerable effect on the probability of pedestrian fatality and allowing important social costs savings. Driving simulators offer a safe environment in which to test driver response while approaching pedestrian crossings, exploiting the important contribution that virtual reality techniques may offer while studying driver-road interactions.
Keywords: vulnerable road users; driving simulator; driving behavior; urban collector road; road safety
2025 ISSUES
2024 ISSUES
LXII - April 2024LXIII - July 2024LXIV - November 2024Special 2024 Vol1Special 2024 Vol2Special 2024 Vol3Special 2024 Vol4
2023 ISSUES
LIX - April 2023LX - July 2023LXI - November 2023Special Issue 2023 Vol1Special Issue 2023 Vol2Special Issue 2023 Vol3
2022 ISSUES
LVI - April 2022LVII - July 2022LVIII - November 2022Special Issue 2022 Vol1Special Issue 2022 Vol2Special Issue 2022 Vol3Special Issue 2022 Vol4
2021 ISSUES
LIII - April 2021LIV - July 2021LV - November 2021Special Issue 2021 Vol1Special Issue 2021 Vol2Special Issue 2021 Vol3
2020 ISSUES
2019 ISSUES
Special Issue 2019 Vol1Special Issue 2019 Vol2Special Issue 2019 Vol3XLIX - November 2019XLVII - April 2019XLVIII - July 2019
2018 ISSUES
Special Issue 2018 Vol1Special Issue 2018 Vol2Special Issue 2018 Vol3XLIV - April 2018XLV - July 2018XLVI - November 2018
2017 ISSUES
Special Issue 2017 Vol1Special Issue 2017 Vol2Special Issue 2017 Vol3XLI - April 2017XLII - July 2017XLIII - November 2017
2016 ISSUES
Special Issue 2016 Vol1Special Issue 2016 Vol2Special Issue 2016 Vol3XL - November 2016XXXIX - July 2016XXXVIII - April 2016
2015 ISSUES
Special Issue 2015 Vol1Special Issue 2015 Vol2XXXV - April 2015XXXVI - July 2015XXXVII - November 2015
2014 ISSUES
Special Issue 2014 Vol1Special Issue 2014 Vol2Special Issue 2014 Vol3XXXII - April 2014XXXIII - July 2014XXXIV - November 2014
2013 ISSUES
2012 ISSUES
2011 ISSUES
2010 ISSUES
2009 ISSUES
2008 ISSUES
2007 ISSUES
2006 ISSUES
2005 ISSUES
2004 ISSUES
2003 ISSUES