Research on short-term traffic flow prediction model based on threshold autoregression
J.J. Zhang, C.F. Shao, F. Wang
Pages: 79-84
Abstract:
Traffic congestion is a problem faced by cities, and it is urgent for solving this issue. The real-time and accuracy of traffic flow prediction directly affect the efficiency of traffic flow guidance system,which is a hot issue of intelligent transportation system research. The time series of the same traffic flow has different characteristics in different time buckets, so the traffic flow sequence is divided into subsequences with different characteristics by the accumulative departure method. A prediction model of short-time traffic flow sequence based on threshold autoregression (TAR) is established by taking the above time as the threshold value. The real-time traffic flow time series of city expressway in Beijing is taken as the object of empirical study. The results show that the average error and mean absolute error of the model are -0.38% and 7.38% that are lower than 3.08% and 7.73% of ARIMA prediction model when the prediction step size is 1. When the prediction step size is 5, the average error and mean absolute error are -0.71% and 14.78% that are lower than 5.40% and 17.44% of ARIMA prediction model. The simulation results demonstrate that the algorithm has better prediction accuracy, which can verify the feasibility and effectiveness of the algorithm in the prediction realm.
Keywords: urban traffic; short-time traffic flow; TAR; ARIMA model
2025 ISSUES
2024 ISSUES
LXII - April 2024LXIII - July 2024LXIV - November 2024Special 2024 Vol1Special 2024 Vol2Special 2024 Vol3Special 2024 Vol4
2023 ISSUES
LIX - April 2023LX - July 2023LXI - November 2023Special Issue 2023 Vol1Special Issue 2023 Vol2Special Issue 2023 Vol3
2022 ISSUES
LVI - April 2022LVII - July 2022LVIII - November 2022Special Issue 2022 Vol1Special Issue 2022 Vol2Special Issue 2022 Vol3Special Issue 2022 Vol4
2021 ISSUES
LIII - April 2021LIV - July 2021LV - November 2021Special Issue 2021 Vol1Special Issue 2021 Vol2Special Issue 2021 Vol3
2020 ISSUES
2019 ISSUES
Special Issue 2019 Vol1Special Issue 2019 Vol2Special Issue 2019 Vol3XLIX - November 2019XLVII - April 2019XLVIII - July 2019
2018 ISSUES
Special Issue 2018 Vol1Special Issue 2018 Vol2Special Issue 2018 Vol3XLIV - April 2018XLV - July 2018XLVI - November 2018
2017 ISSUES
Special Issue 2017 Vol1Special Issue 2017 Vol2Special Issue 2017 Vol3XLI - April 2017XLII - July 2017XLIII - November 2017
2016 ISSUES
Special Issue 2016 Vol1Special Issue 2016 Vol2Special Issue 2016 Vol3XL - November 2016XXXIX - July 2016XXXVIII - April 2016
2015 ISSUES
Special Issue 2015 Vol1Special Issue 2015 Vol2XXXV - April 2015XXXVI - July 2015XXXVII - November 2015
2014 ISSUES
Special Issue 2014 Vol1Special Issue 2014 Vol2Special Issue 2014 Vol3XXXII - April 2014XXXIII - July 2014XXXIV - November 2014
2013 ISSUES
2012 ISSUES
2011 ISSUES
2010 ISSUES
2009 ISSUES
2008 ISSUES
2007 ISSUES
2006 ISSUES
2005 ISSUES
2004 ISSUES
2003 ISSUES