Investigating factors that contribute to freeway crash severity using machine learning
A. Nickkar, A. Yazdizadeh, Y.-J. Lee
Pages: 131-142
Abstract:
While the cost of crashes nears $1 trillion a year in the U.S., the availability of high-resolution Highway Safety Information System (HSIS) data allows researchers to conduct an in-depth analysis of factors that contribute to crashes, and design appropriate interventions. The current study has two main goals: First, finding possible relationships between contributing factors and the severity of crashes on urban expressways and freeways, and, second, improving the prediction accuracy by using a machine learning approach to classify the crash severity and evaluate the performance of this classifier algorithm. We used the crash data on urban expressways and freeways from 2005 to 2015 in the state of Washington provided by HSIS. This study uses the random forest model to predict the severity of crashes based on the attributes. The random forest model was able to predict the severity of crashes with 88.6 % accuracy while we observed precision of 89.9%, 62.1%, and 40.1% for classes 1-3, respectively. We found that crash type, functional class of road, AADT, and location type played a more important role than other variables in predicting the severity of crashes. Furthermore, lighting conditions, weather, year of the crash, and the road characteristics did not have much effect on the severity of crashes.
Keywords: data mining; machine learning; crash severity; crash analysis
2025 ISSUES
2024 ISSUES
LXII - April 2024LXIII - July 2024LXIV - November 2024Special 2024 Vol1Special 2024 Vol2Special 2024 Vol3Special 2024 Vol4
2023 ISSUES
LIX - April 2023LX - July 2023LXI - November 2023Special Issue 2023 Vol1Special Issue 2023 Vol2Special Issue 2023 Vol3
2022 ISSUES
LVI - April 2022LVII - July 2022LVIII - November 2022Special Issue 2022 Vol1Special Issue 2022 Vol2Special Issue 2022 Vol3Special Issue 2022 Vol4
2021 ISSUES
LIII - April 2021LIV - July 2021LV - November 2021Special Issue 2021 Vol1Special Issue 2021 Vol2Special Issue 2021 Vol3
2020 ISSUES
2019 ISSUES
Special Issue 2019 Vol1Special Issue 2019 Vol2Special Issue 2019 Vol3XLIX - November 2019XLVII - April 2019XLVIII - July 2019
2018 ISSUES
Special Issue 2018 Vol1Special Issue 2018 Vol2Special Issue 2018 Vol3XLIV - April 2018XLV - July 2018XLVI - November 2018
2017 ISSUES
Special Issue 2017 Vol1Special Issue 2017 Vol2Special Issue 2017 Vol3XLI - April 2017XLII - July 2017XLIII - November 2017
2016 ISSUES
Special Issue 2016 Vol1Special Issue 2016 Vol2Special Issue 2016 Vol3XL - November 2016XXXIX - July 2016XXXVIII - April 2016
2015 ISSUES
Special Issue 2015 Vol1Special Issue 2015 Vol2XXXV - April 2015XXXVI - July 2015XXXVII - November 2015
2014 ISSUES
Special Issue 2014 Vol1Special Issue 2014 Vol2Special Issue 2014 Vol3XXXII - April 2014XXXIII - July 2014XXXIV - November 2014
2013 ISSUES
2012 ISSUES
2011 ISSUES
2010 ISSUES
2009 ISSUES
2008 ISSUES
2007 ISSUES
2006 ISSUES
2005 ISSUES
2004 ISSUES
2003 ISSUES