Home

Aims and Scope

Instructions for Authors

View Issues & Articles

Editorial Board

Article Search

ATS International Journal
Editor in Chief: Prof. Alessandro Calvi
Address: Via Vito Volterra 62,
00146, Rome, Italy.
Mail to: alessandro.calvi@uniroma3.it

Research on prediction of urban congestion based on radial basis function network

Y.R. Guo, X.M. Wang, M. Wang, H. Zhang
Pages: 145-156

Abstract:

There are many indicators in the prediction of intelligent traffic congestion, and the process of weight determination is complex, which results in poor accuracy. Based on radial basis function (RBF) network, this paper proposes a method to predict urban congestion. The ability of RBF network to analyze complex parameters is used to collect multi parameter indicators of urban traffic. The multi parameter indicators are used to select the evaluation indicators of urban congestion conditions, and the weights of different evaluation indicators of urban traffic congestion are determined under the analytic hierarchy process (AHP). The grade of urban traffic conditions is divided according to the importance of the indicators, and the urban congestion conditions are predicted according to the weighted average results of each indicator. The experimental results show that under the condition of reasonable distribution of multi parameter weights, the prediction accuracy is about 90%, and the accuracy is improved obviously.
Keywords: radial basis function network; urban congestion; prediction; neural network

2025 ISSUES
2024 ISSUES
2023 ISSUES
2022 ISSUES
2021 ISSUES
2020 ISSUES
2019 ISSUES
2018 ISSUES
2017 ISSUES
2016 ISSUES
2015 ISSUES
2014 ISSUES
2013 ISSUES
2012 ISSUES
2011 ISSUES
2010 ISSUES
2009 ISSUES
2008 ISSUES
2007 ISSUES
2006 ISSUES
2005 ISSUES
2004 ISSUES
2003 ISSUES