Home

Aims and Scope

Instructions for Authors

View Issues & Articles

Editorial Board

Article Search

ATS International Journal
Editor in Chief: Prof. Alessandro Calvi
Address: Via Vito Volterra 62,
00146, Rome, Italy.
Mail to: alessandro.calvi@uniroma3.it

A lane-changing trajectory prediction method in Internet of Vehicles environment

C.H. Sun, Y. Sun
Pages: 55-64

Abstract:

The traditional lane change trajectory prediction method has some problems such as large deviation of actual estimation and long prediction time. This paper proposes a lane change trajectory prediction method in the network of vehicles environment. Firstly, the hidden Markov model is used to classify the vehicle behavior in networked vehicle environment into three types: left lane change, right lane change and straight lane change. Secondly, according to the vehicle behavior, the lateral displacement is taken as the index to judge the safety state of the vehicle, and the lane-changing intention of the vehicle is analyzed by using the gradient lifting decision tree. Finally, the vehicle state vector is mapped to the social pool according to the result of lane change intention, combined with the vehicle speed and Angle, and the road network information, traffic control information, road traffic flow information, traffic control state information in the Internet of vehicles and real-time traffic environment information are used as lane change trajectory prediction data. Combined with vehicle state vector, lane change trajectory prediction is realized by multi-layer perceptron. The experimental results show that the proposed method has a high degree of fitting with the actual trajectory under different time domain conditions, and the root mean square error of prediction is stable within 0.64, and the prediction time is short.
Keywords: internet of vehicles environment; lane-changing trajectory; hidden markov model; gradient lifting decision tree; training mechanism; intention analysis

2025 ISSUES
2024 ISSUES
2023 ISSUES
2022 ISSUES
2021 ISSUES
2020 ISSUES
2019 ISSUES
2018 ISSUES
2017 ISSUES
2016 ISSUES
2015 ISSUES
2014 ISSUES
2013 ISSUES
2012 ISSUES
2011 ISSUES
2010 ISSUES
2009 ISSUES
2008 ISSUES
2007 ISSUES
2006 ISSUES
2005 ISSUES
2004 ISSUES
2003 ISSUES