Research on collision avoidance control of intelligent vehicles based on MSTUKF road adhesion coefficient identification
S.F. Wang, Q.W. Liang, Z. Liu, J.Y. Zhang
Pages: 245-260
Abstract:
For the improvement of active safety and the reduction of traffic collisions, significant efforts have been made on collision avoidance technology. However, the majority of the current research focus on the relative motion of the vehicle, with less consideration of the road adhesion condition. This paper designs Multiple fading factors Strong Tracking Unscented Kalman Filter (MSTUKF) algorithm to identify road adhesion coefficient and proposes the collision avoidance strategy based on road adhesion. First, according to sensor information, the most dangerous target is selected. Then, multiple fading factors are introduced to construct MSTUKF algorithm, and combined with the vehicle dynamics model to identify the current road adhesion coefficient. For better collision avoidance effect, the dual risk assessment of vehicle and road are proposed, in which Time-To-Collision (TTC) is established according to the relative motion state of ego vehicle and the target, and Time-To-Avoidance (TTA) is calculated based on the road adhesion coefficient. Finally, using the feedforward and feedback control, the desired braking deceleration can be obtained by adjusting the master cylinder brake pressure. The simulation results show that the proposed algorithm can identify road adhesion coefficients with high accuracy and stability. Furthermore, the proposed strategy can provide good collision avoidance control effect under different scenarios.
Keywords: intelligent vehicles; collision avoidance; MSTUKF; road adhesion identification; dual risk assessment
2025 ISSUES
2024 ISSUES
LXII - April 2024LXIII - July 2024LXIV - November 2024Special 2024 Vol1Special 2024 Vol2Special 2024 Vol3Special 2024 Vol4
2023 ISSUES
LIX - April 2023LX - July 2023LXI - November 2023Special Issue 2023 Vol1Special Issue 2023 Vol2Special Issue 2023 Vol3
2022 ISSUES
LVI - April 2022LVII - July 2022LVIII - November 2022Special Issue 2022 Vol1Special Issue 2022 Vol2Special Issue 2022 Vol3Special Issue 2022 Vol4
2021 ISSUES
LIII - April 2021LIV - July 2021LV - November 2021Special Issue 2021 Vol1Special Issue 2021 Vol2Special Issue 2021 Vol3
2020 ISSUES
2019 ISSUES
Special Issue 2019 Vol1Special Issue 2019 Vol2Special Issue 2019 Vol3XLIX - November 2019XLVII - April 2019XLVIII - July 2019
2018 ISSUES
Special Issue 2018 Vol1Special Issue 2018 Vol2Special Issue 2018 Vol3XLIV - April 2018XLV - July 2018XLVI - November 2018
2017 ISSUES
Special Issue 2017 Vol1Special Issue 2017 Vol2Special Issue 2017 Vol3XLI - April 2017XLII - July 2017XLIII - November 2017
2016 ISSUES
Special Issue 2016 Vol1Special Issue 2016 Vol2Special Issue 2016 Vol3XL - November 2016XXXIX - July 2016XXXVIII - April 2016
2015 ISSUES
Special Issue 2015 Vol1Special Issue 2015 Vol2XXXV - April 2015XXXVI - July 2015XXXVII - November 2015
2014 ISSUES
Special Issue 2014 Vol1Special Issue 2014 Vol2Special Issue 2014 Vol3XXXII - April 2014XXXIII - July 2014XXXIV - November 2014
2013 ISSUES
2012 ISSUES
2011 ISSUES
2010 ISSUES
2009 ISSUES
2008 ISSUES
2007 ISSUES
2006 ISSUES
2005 ISSUES
2004 ISSUES
2003 ISSUES