Home

Aims and Scope

Instructions for Authors

View Issues & Articles

Editorial Board

Article Search

ATS International Journal
Editor in Chief: Prof. Alessandro Calvi
Address: Via Vito Volterra 62,
00146, Rome, Italy.
Mail to: alessandro.calvi@uniroma3.it

Lane detection of intelligent assisted driving system based on convolutional neural network

P. Wang
Pages: 103-112

Abstract:

Lane detection is a key link in intelligent assisted driving systems. In order to improve the accuracy and real-time performance of lane line detection, the paper proposes an new lane detection method of intelligent assisted driving system based on convolutional neural networks. Firstly, along the scanning line of the LiDAR, a sliding window is used to extract road surface points. Secondly, based on the extraction results of road surface points, the edge of lane lines is enhanced through prior features of lane lines, and lane segments are extracted using line operation functions. Finally, normalize the extracted lane segments and establish a lane detection model through layer by layer training based on convolutional neural networks. The experimental results show that this method can improve the accuracy of lane detection, shorten detection time with maximum detection time 0.5 seconds.
Keywords: convolutional neural network; intelligent assisted driving vehicle; lane line detection; line operation function; normalization

2025 ISSUES
2024 ISSUES
2023 ISSUES
2022 ISSUES
2021 ISSUES
2020 ISSUES
2019 ISSUES
2018 ISSUES
2017 ISSUES
2016 ISSUES
2015 ISSUES
2014 ISSUES
2013 ISSUES
2012 ISSUES
2011 ISSUES
2010 ISSUES
2009 ISSUES
2008 ISSUES
2007 ISSUES
2006 ISSUES
2005 ISSUES
2004 ISSUES
2003 ISSUES