Prediction of road traffic accident severity based on XGBoost-BP neural network
R.Y. Qian, X. Wang
Pages: 19-36
Abstract:
Traffic safety has been of great concern in recent years. The prediction of the severity of traffic accidents is an important part of it. The occurrence of traffic accidents shows the characteristics of uncertainty and non-linearity because of the influence of random factors. However, most of the existing models are single machine learning (ML) models, which have limitations in accuracy and generalization. This study proposes a traffic accident severity prediction model based on a combination of XGBoost (eXtreme Gradient Boosting) and Backpropagation Neural Network (BPNN). Firstly, feature selection is performed using the XGBOOST model. Secondly, the selected feature is used as the input layer of BPNN. In addition, traffic accidents have class imbalance, so the total cost is minimized by using cost-sensitive algorithm. Finally, the precision, recall and area under the curve (AUC) are used to evaluate the prediction results of the model. The 2005-2014 UK traffic accident dataset is used for prediction and compared with other machine learning models. Experiments show that (1) the XGBoost-BPNN model outperformed the single XGBoost, logistic regression (LR), and Support vector machine (SVM) models in terms of AUC, recall, and precision. (2) The number of neurons, the number of hidden layers and the learning rate of a neural network model have a large impact on the prediction accuracy. Increasing the number of neurons appropriately can improve the convergence speed and prediction effect of the model. This study can provide a reference for traffic accident prevention and early warning.
Keywords: neural network; traffic accident risk predicting; imbalanced dataset
2025 ISSUES
2024 ISSUES
LXII - April 2024LXIII - July 2024LXIV - November 2024Special 2024 Vol1Special 2024 Vol2Special 2024 Vol3Special 2024 Vol4
2023 ISSUES
LIX - April 2023LX - July 2023LXI - November 2023Special Issue 2023 Vol1Special Issue 2023 Vol2Special Issue 2023 Vol3
2022 ISSUES
LVI - April 2022LVII - July 2022LVIII - November 2022Special Issue 2022 Vol1Special Issue 2022 Vol2Special Issue 2022 Vol3Special Issue 2022 Vol4
2021 ISSUES
LIII - April 2021LIV - July 2021LV - November 2021Special Issue 2021 Vol1Special Issue 2021 Vol2Special Issue 2021 Vol3
2020 ISSUES
2019 ISSUES
Special Issue 2019 Vol1Special Issue 2019 Vol2Special Issue 2019 Vol3XLIX - November 2019XLVII - April 2019XLVIII - July 2019
2018 ISSUES
Special Issue 2018 Vol1Special Issue 2018 Vol2Special Issue 2018 Vol3XLIV - April 2018XLV - July 2018XLVI - November 2018
2017 ISSUES
Special Issue 2017 Vol1Special Issue 2017 Vol2Special Issue 2017 Vol3XLI - April 2017XLII - July 2017XLIII - November 2017
2016 ISSUES
Special Issue 2016 Vol1Special Issue 2016 Vol2Special Issue 2016 Vol3XL - November 2016XXXIX - July 2016XXXVIII - April 2016
2015 ISSUES
Special Issue 2015 Vol1Special Issue 2015 Vol2XXXV - April 2015XXXVI - July 2015XXXVII - November 2015
2014 ISSUES
Special Issue 2014 Vol1Special Issue 2014 Vol2Special Issue 2014 Vol3XXXII - April 2014XXXIII - July 2014XXXIV - November 2014
2013 ISSUES
2012 ISSUES
2011 ISSUES
2010 ISSUES
2009 ISSUES
2008 ISSUES
2007 ISSUES
2006 ISSUES
2005 ISSUES
2004 ISSUES
2003 ISSUES