Home

Aims and Scope

Instructions for Authors

View Issues & Articles

Editorial Board

Article Search

ATS International Journal
Editor in Chief: Prof. Alessandro Calvi
Address: Via Vito Volterra 62,
00146, Rome, Italy.
Mail to: alessandro.calvi@uniroma3.it

Short-term passenger demand modelling using automatic fare collection data: a case study of Hubli-Dharwad BRTS

S. Halyal, R.H. Mulangi, M.M. Harsha
Pages: 103-122

Abstract:

A well-planned Intelligent Transport System (ITS), is the need of the hour for solving the problem of excessive traffic and unacceptable travel durations in public transit systems. However, for the successful operation of an ITS, the forecasting of passenger demand on a regular basis is essential. Obtaining reliable and accurate passenger data required for forecasting passenger demand is a genuinely tedious task for most of the researchers. The current study focused on short-term forecasting of passenger demand using reliable ITS-based data from Hubli-Dharwad Bus Rapid Transit System (HDBRTS) as a case study. The aggregate pattern of passenger demand data was visualized using one month of Automated Fare Collection System (AFCS) data. Subsequently, Autoregressive Integrated Moving Average (ARIMA) and Seasonal ARIMA models were used on the data of selected stations and tested for their forecasting accuracy. Outcomes of the current case study show that Seasonal ARIMA models are the most suitable for forecasting the passenger data over the conventional ARIMA models. The most suitable and reliant models were evidenced through lower values of Mean Absolute Percentage Error (MAPE), Akaike’s Information Criterion (AIC), and Bayesian Information Criterion (BIC). The current case study helps in having an inclusive view of the passenger flow characteristics for the further advancement of the system. Research work in the Indian context, especially on the usage of AFCS data, is quite limited, this study makes to explore the possibility of using AFCS data efficiently in forecasting passenger demand.
Keywords: Intelligent Transportation System; AFCS; forecasting of bus passenger demand; ARIMA; SARIMA

2025 ISSUES
2024 ISSUES
2023 ISSUES
2022 ISSUES
2021 ISSUES
2020 ISSUES
2019 ISSUES
2018 ISSUES
2017 ISSUES
2016 ISSUES
2015 ISSUES
2014 ISSUES
2013 ISSUES
2012 ISSUES
2011 ISSUES
2010 ISSUES
2009 ISSUES
2008 ISSUES
2007 ISSUES
2006 ISSUES
2005 ISSUES
2004 ISSUES
2003 ISSUES