Development of lag size-based safety thresholds for skewed uncontrolled intersections
A.R. Arathi, M. Harikrishna, M. Mohan
Pages: 49-64
Abstract:
Gap/Lag acceptance is the primary basis for analysing uncontrolled intersections. Misjudgement in gap/lag acceptance imparts high risk to the drivers. The gap refers to the temporal difference between consecutive vehicles on a major road, whereas lag is a part of the available gap, occasionally coinciding with the first gap. Even though both are different in real scenarios, studies do not consider them separate. The lag acceptance behaviour of drivers must be studied thoroughly because the acceptance of shorter lags is more in developing countries due to the aggressive behaviour of drivers, which might lead to road crashes. However, such studies are very scarce compared to gap acceptance studies. A study of the lag acceptance process is essential for improved traffic safety and operational efficiency at skewed uncontrolled intersections. This study adopted machine-learning techniques to predict the lag acceptance decision of drivers to examine how it performs compared to commonly used methods. Data were collected at six intersections from various cities in Kerala, India, during peak hours. Artificial Neural Network (ANN), Logistic Regression (LR) and Support Vector Machine (SVM) models were developed, and their performance was compared. The occupancy time approach was used to determine the critical lag. The goodness of fit measures shows that the ANN model outperforms the LR and SVM models, with an accuracy of 93.6%. Furthermore, goodness-of-fit measures such as F1 score and R2 values are 0.964 and 0.892, indicating that the prediction of the ANN model is excellent. Lag sizes of less than 2.7, 3.5, and 3.0 seconds were shown to be less safe, corresponding to right-turn from major, right-turn from minor and through from major roads.
Keywords: skewed uncontrolled intersections; lag acceptance; lag size; critical lag; safety thresholds
2025 ISSUES
2024 ISSUES
LXII - April 2024LXIII - July 2024LXIV - November 2024Special 2024 Vol1Special 2024 Vol2Special 2024 Vol3Special 2024 Vol4
2023 ISSUES
LIX - April 2023LX - July 2023LXI - November 2023Special Issue 2023 Vol1Special Issue 2023 Vol2Special Issue 2023 Vol3
2022 ISSUES
LVI - April 2022LVII - July 2022LVIII - November 2022Special Issue 2022 Vol1Special Issue 2022 Vol2Special Issue 2022 Vol3Special Issue 2022 Vol4
2021 ISSUES
LIII - April 2021LIV - July 2021LV - November 2021Special Issue 2021 Vol1Special Issue 2021 Vol2Special Issue 2021 Vol3
2020 ISSUES
2019 ISSUES
Special Issue 2019 Vol1Special Issue 2019 Vol2Special Issue 2019 Vol3XLIX - November 2019XLVII - April 2019XLVIII - July 2019
2018 ISSUES
Special Issue 2018 Vol1Special Issue 2018 Vol2Special Issue 2018 Vol3XLIV - April 2018XLV - July 2018XLVI - November 2018
2017 ISSUES
Special Issue 2017 Vol1Special Issue 2017 Vol2Special Issue 2017 Vol3XLI - April 2017XLII - July 2017XLIII - November 2017
2016 ISSUES
Special Issue 2016 Vol1Special Issue 2016 Vol2Special Issue 2016 Vol3XL - November 2016XXXIX - July 2016XXXVIII - April 2016
2015 ISSUES
Special Issue 2015 Vol1Special Issue 2015 Vol2XXXV - April 2015XXXVI - July 2015XXXVII - November 2015
2014 ISSUES
Special Issue 2014 Vol1Special Issue 2014 Vol2Special Issue 2014 Vol3XXXII - April 2014XXXIII - July 2014XXXIV - November 2014
2013 ISSUES
2012 ISSUES
2011 ISSUES
2010 ISSUES
2009 ISSUES
2008 ISSUES
2007 ISSUES
2006 ISSUES
2005 ISSUES
2004 ISSUES
2003 ISSUES